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ABSTRACT 

We show that the measure preserving action of Z 2 dual to the action 

defined by the commuting automorphisms xz  and xy on the discrete 

group Z[z :t:1 , y+l]/(1 + z + y)Z[z :t:1 , y4-1] is measurably isomorphic to a 

Z 2 Bernoulli shift. This was conjectured in recent work by Lind, Schmidt 

and the author, where it was shown that this action has completely pos- 

itive entropy. An example is given of Z 2 actions which are measurably 

isomorphic without being topologically conjugate. 

1. I n t r o d u c t i o n  

Let 

(1.1) X={xET z2 ]x(.,m)+X(.+,,m)+x(n,m+,)=lforalln, mEZ}. 

Then X is a compact abelian group carrying a natural Z 2 action a : Z 2 ---+ Aut(X) 

given by the restriction of the shift action on T z' to the closed, shift-invariant 

subgroup X: 

(1.2) (a(kj)x)(.,m) = x(.+k,m+0. 

This action is an example of a 7, d action on a compact abelian group, and these 

have been systematically studied in [7], [11], [18], and [19]. The action is mixing 

(by Theorem 11.2(4) of [7]), has a dense set of periodic points (Theorem 7.2 of 

[7]), and has trivial Pinsker algebra (Theorem 6.13 of [11]). It follows that  the 
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action is mixing of all orders (Corollary 6.7 of [11]). By Theorem 6.14 of [11], 

I'Iaar measure is maximal for a, and the topological entropy of o~ is given in [11], 

Example 5.1: 

(1.3) = log I 1 +  2.i. + I dsdt  = -2g/L(2,  X3) 

where L(., X3) is the Diriehlet L-series with the character 

x (3k) = o, x3(3k ± 1) = +1.  

The group T z* is dual to the ring of Laurent polynomials Z[z ±1, y±a], and the 

closed subgroup X is the annihilator of the ideal (1 + z + y). The ideal (2, 1 + z + y) 

gives the Z ~ action considered by Ledrappier, [8]: this example has zero entropy 

and is mixing, but is not mixing of all orders. 

Our purpose here is to show that the Z 2 action defined by (1 + z + y) is 

measurably isomorphic to a Bernoulli Z z action; this is a special case of the 

more general conjecture (Conjecture 6.8 in [11]), that a Z d action on a compact 

abelian group with the Descending Chain Condition (see [7]) is isomorphic to a 

Bernoulli action if it has completely positive entropy. This, in turn, is a special 

case of the following question, due to Thouvenot: is the K property equivalent to 

being measurably isomorphic to a Bernoulli shift for higher dimensional Markov 

shifts? 
For d = 1, an ergodic automorphism of a compact abelian group was shown to 

be K in 1964 by Rokhlin [16]. An ergodic automorphism of T", and the natural 

automorphic extension to a solenoid of an ergodic endomorphism of T n were 

shown to be Bernoullian by Katznelson in 1971, [3]; this was extended to infinite 

dimensional tori by Lind, [9], and independently by Chu, [1]. The final result 

that an ergodic automorphism of a compact group is measurably isomorphic to 

a Bernoulli shift was shown by Lind in 1977, [10], and independently by Miles 

and Thomas, [12]. 

One dimensional mixing Markov shifts are isomorphic to Bernoulli shifts [13], 

and a partial result in the direction of Thouvenot's question has been shown 

by Rosenthal [17]: an ergodic Markov 7. 2 system with finite alphabet has the 

weak Pinsker  p rope r ty ,  which means it can be written as a direct product of 

a Bernoulli system and a system of arbitrarily small entropy. 

The results of [7] and [10] applied to the action a show that for any (a, b) 

(0,0), the automorphism a(a,b) of X is measurably isomorphic to an infinite 
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entropy Bernoulli shift. This property is clearly necessary but is not sufficient 

to guarantee that  the action is measurably isomorphic to a Bernoulli Z 2 action: 

the ideal generated by {z + 2, V + 2} defines a Z 2 action fl with the property that  

fi(a,b) is isomorphic to an infinite entropy Bernoulli shift for any (a, b) ~ (0, 0), 

but the action fl has zero entropy by [11]. In this connection, see also Example 

5.7 of [11]. 

For any subset F C Z 2, let lr (F) : X ~ T F denote projection onto the coor-  

d i n a t e s  in F;  the image of lr (F) is a closed subgroup of T F. Let pF denote the 

normalised Haar measure on ~r (F). 

Let e(t) = e 2~it. A Laurent polynomial fa(u) = ~ a~u k E Z[u, u -1] defines a 

character Xa of T z by 

xa(t) = IX e(akt~) = e ( E  aktk). 

The mapping fa  H Xa identifies the dual of T z with Z[u, u- l ] .  It will be conve- 

nient to also note the further identification of 7.[u, u -1] with ~-~z 7,, effected by 

sending 
m 

:.(u)= 
k ~ - - n  

to the finitely supported infinite integer vector a = ( . . . ,  0, a - n , . . . ,  am, 0 , . . . ) .  

Now let S = {1 , . . . ,  r} be a finite set. Given two probability measures p and 

u on S z2, and D a finite subset of Z 2, define the space of joinings JD(#, u) as 

follows. Write #D, uD for the marginal measures induced by # and v on S D. If 

A is a probability measure on S ° x S D then write A 1, A 2 for the two marginals 

of )~, and set 

J o ( # , , 4  = I = = 

The d distance between the probability measures # and t, is defined as in [21]. 

Let d be the trivial metric on S given by d(i , j )  = 0 if i = j ,  d( i , j )  = 1 if i ~ j ,  

and let x = {z,}, y = {y,} be the processes with alphabet S defined by # and 

I/respectively. Then define 

= 

and 

(1.4) 

1 
inf 

)~EJD(I~,g) [ D I dED 

d(#, v) = lim sup dD(#, v). 
D 
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We amend the definition of ABI in [21] as follows. Let a be the shift on S z2. 

Say that  a stationary Z 2 process x has a lmos t  block i n d e p e n d e n c e  if for any 

e > 0 there is an N, such that if n >_ N,, R = [0, n - 1) x [0, n - 1) N Z 2, and y 

is another process with 

(1) aR(a,(f,b)(y),z) = 0 for all (a,b) E Z ~ and 

(2) y restricted to n(a, b) + R is independent of y restricted to n(a', b t) + R if 

(a,b) ~ (a',b'), 

then d(:t, y) < t. 

Notice that it is suflleient to produce a process y with properties (1), (2) and 

having d(z, It) < e since the properties together determine !t in the sense that if 

y, ~ are processes sharing (1) and (2), then d(y, if) = 0. 

For a Z process with finite state space Theorem 2 in [21] shows that  almost 

block independence implies finitely determined and hence a process with almost 

block independence is a stationary coding of a Bernoulli process. We explain in 

Appendix B how the ideas of [21] may be applied to Z 2 to show the process is 

finitely determined. The equivalence of finitely determined to Bernoulli is shown 

in [2], §1. 

2. A l m o s t  Block  I n d e p e n d e n c e  

For each pair n, m E Z with n < m, define 

s ( . ,  m) = {(a, b) e Z I" < < m). 

For a trigonometric polynomial f : T ~ C, let H(f)  denote the highest frequency 

in f ,  so that if f(t) = ~cke(k t )  then H(f)  = max{lk [ [ ck ~ 0}. For a 

character X on T z, let H(X) denote the largest frequency appearing in X, so 

H(x.) = max{la~l}. For a polynomial anu-" + . . .  + am um in Z[u,u -a] call 

n + m the degree of the polynomial. 

LEMMA 2.1: Let m(N,D)  = min{r [(r  - 2)[ _> N2(D + 1)}. If  

= IX × 1-[ f ,J( ' , i )  
S(-p,0) S(m,m+q) 

where each fij is a trigonometric polynomial with H(fij)  < N, f i j  = 1 i f  IJl > 

D, and m > re(N, D), then f fdpoo = f fdv~ ,  where poo is Haar measure 
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On ~(S(-p'O)US(m'm+q))(X), alld Voo i8 the independent concatenation o f  Ham" 

measure on ~s(-P'°)(X) and Ham" measure on :¢s(","+q)(X).  

Proof: Notice that the values of a point x E X on the coordinates in the vertical 

line L(n) = {(a,b) E Z 2 l a = n} determine (by (1.1)) the coordinates in S (n ,m)  

for any m _> n. Thus we can identify a function h on ~ s ( " " ) ( X )  with a function 

o n  ~L(")(X). 
If X is any character on ~s(-",°)(X) x rs (" 'm+q)(X)  then, by the usual theory 

of characters, 
/ { 1' if X = I ;  

xdv~o = 0, if not. 

Similarly, 

( 1, if X = 1 on lr(s(-v'°)vS('n'm+q))(X); 
xdpc¢ = 0, if not. 

As above, identify the dual group of ~rL(")(X) with Z[u,u-1],  and let 

EN = { f  ~ Z[u,u-1] l H(f)  < N}. 

The way in which a character X,, on 7rL(')(X) determines (or induces) a char- 

acter on the adjacent lines ~rL('-I)(X) and ~rL("+O(X) is as follows. 

On 1rL('-O(X), Xa induces the character Xs,, where S is the injective ho- 

momorphism of Z[u, u -1] dual to the surjective homomorphism that transforms 

x = (x.-1,k)k~Z to y = (x.,k)keZ according to the rule (1.1). Thus S may be 

expressed explicitly in two different ways. If the character Xa is identified with 

the finitely supported infinite integer vector a, then S has the upper triangular 

matrix form 

(2.1) S -- 

• • 

- 1  - 1  
- 1  - 1  

- 1  - 1  
• • 

(here the diagonal is ( . . . , - 1 ,  - 1 , - 1 , . . . ) ) .  If the character Xa is identified with 

the polynomial fa(u) then the action of S is multiplication by the polynomial 
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- ( 1  + u - l ) .  By duality, the kernel of the map x ~-* y (a circle) is dual to the 

cokernel of S. 

On ~rz(~+l)(X), Xa induces the character XTa say. Here T is not a homo- 

morphism since S is not invertible (equivalently: the values z = (za+l,k)kCZ 

do not determine the values z = (za,k)keZ). To describe the map T, let a = 

( . . . ,  0, a_ n, • •. ,  am, 0 , . . . )  have a _ ,  ~ 0, and notice that 

XTa(X) = f{~y=x} Xa(y)dy 

where the integration is with respect to Haar measure on ~rL(~+*)(X) = T z, 

which is the infinite product of Lebesgue measure on T. Label the coordinates 

(x,+l,k)kez by (x , ) , e z ,  where x~+l,k = x-k.  Applying the rule (1.1), this sim- 

plifies to give 

_/e(a-nY-n)e(a-n+l  ( X - n + l  - -  Y-n))e(a-n+2(x-n+2 -- Y-n+I )) . . .  X T a ( X )  

e(am(x,~ - Ym-1 ))dy_,. . .  dy,,-1 

= / e(a-nY-n)e(a-,+z(-Z-n+l - Y-n)) 

+ + Y--))"" 

e(am(--x m n u X m _  1 - -  : r m _  2 ~- . . . .  ( - 1 ) m ' f ' n ~ _ n ) ) d y _  n 

which vanishes unless ~-'](--1)kak = 0. We conclude that 

Xb(x), if ~( - -1)kak  = 0 ,  
(2.2) XTa(X) = 0, if ~-~'~(--1)kak • 0, 

where b (written in polynomial form) is given by 

f b ( U )  =u-n+l(--a-n+l + a-n+2 . . . .  ::h am) 

(2.3) + + - . .  + + . - .  + 

The support of the Fourier transform of the function induced on L(m) by the 

function 1-Is(re,re+q) fii  lies in the set 

(2.4) EN + SEN + S2EN +... SqEN; 

the support of the Fourier transform of the function induced on L(O) by the 

function YIs(m,m+q) fii lies in 

(2.5) Sm(EN + SEN + S2EN "}'"" SqEN), 
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while that  of the function induced by 1-Is(-p,0) fii  on L(0) lies in 

(2.6) TPEN + TP-IEN + . . .  TEN + EN. 

243 

The integrals will therefore agree if, for m > re(N, D), 

(2.7) 

(EN + SEN + S2EN +"" SqEN) N Tm(TPEN + Tp-IEN +... TEN + EN) = {0}. 

We claim that if m > m(N, D) = min{r ] (r - 2)! _> N2(D + 1)}, then 

(2.8) Tm(TPEN + TP-IEN + " "  TEN + EN) f3 (Z[u, u - ' l )  = {0}. 

Consider the expression (2.6). By iterating the map T, we see from (2.2) that 

T~'(fa) = 0 unless the coefficients of fa,  written as a' = (a_,~,.. .  ,am) t with 

a - ,  # 0, satisfy the equations Ma' = 0 where M = M(n + m - 1, k) is the 

(n + m  + 1) × k matrix 

M = 

i --1 1 - 1  1 - 1  1 - 1  1 . . .  
1 - 2  3 - 4  5 - 6  7 - 8  . . .  
0 1 - 3  5 - 7  9 -11 13 . . .  

0 ...... 1 -(l-Fk-l) ... 

(-l)m+"+ I 

whose j t h  row comprises (j - 1) zeros followed by the alternating arithmetic 

progression 

1,--(1 + (j -- 1)),(1 + 2(j -- 1)),--(1 + 3(j -- 1 ) ) , . . . ,  

(--1)'n+'~-/(1 + (m + n + 2 - j)(j  - 1)). 

Notice that since a_ ,  # 0, at # 0 for some I > k; if not the maximal rank of 

the matrix shows that the only solution has a'  = 0. By the appendix, at least 

one element of a has modulus no less than (k - 2)!; since fa E EN, this can only 

happen if (k - 2)! < N. Assuming that N > 4, this certainly requires k < N (it 

requires much more, but for our purposes any estimate will do here). We deduce 

that the only terms that contribute to the left hand side of (2.8) are those of the 

form TkEN with k < N. 

In order to estimate the size of the coefficients of a polynomial in (2.6), let 

/(u) be a_ ,u -"  + . . .  + a,,,u m. Then the condition (2.2) becomes T / =  0 unless 
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f = (1 + u-l)g for some g E Z[u,u-1].  The coefficients of T f  are given by 

(2.3); writing [u k] for the coefficient of u k in Tf  gives the following estimates. 

Firstly, [u -n+']  = - a_ , ,  by the condition (2.2) so I[ --+111 < N. Si~lar ly,  

[u -"+2] = - a - , + l  - [ u  -n+l] so I[u-n+2]l _< 2N. Continuing in this way gives 

I[u-n+/]] < j N  for j -- 1 , . . .  ,n + m .  Starting at the other end of the polynomial 

gives I[u"-i]l < j N  for j = 1 , . . .  ,n + m. This gives the estimate 

I[ ill _< N × min{ l j  + hi, IJ - rn[} 

for each of the coefficients, and hence (recall that n + m _< 2D + 1) 

(2.9) H(Tf) < N x (D + 1). 

Now the map T sends a polynomial like / to a polynomial with the same 

positive (or leading) degree (m), and a lower negative degree (n - 1) (or larger 

positive trailing degree if n < 0); in either case the quantity m % n is diminished 

by one while m is preserved. Thus, if g is a polynomial that appears in (2.6), 

with g(u) = atu 1%... % aku k say, then at  is made up of contributions from T 

acting on a degree 2 polynomial, T 2 acting on a degree 3 polynomial, and so on, 

up to degree N only. The coefficient ak-i  is made up of contributions from T 

acting on a degree 3 polynomial, T 2 acting on a degree 4 polynomial, and so on, 

up to degree N only. By (2.9), 

(2.10) H(g) < N + N(D + 1) + . . . + N ( D  + 1) _< N2(D + 1). 

Apply Appendix A again: Tmg is a trivial character unless 

N2(D + 1) < (m - 2)!. 

Choose m(N,D) = min{r I ( r  - 2)! >_ N2(D + 1)}; then for m > m(N,D), (2.8) 

holds. | 

Following [3], Definition 3, say that a partition P = {P1,..., Pr} of T is nice 

if, for each N E N, there is a set E(N), with p(E(N)) < N -2, and there exist 

trigonometric polynomials { f l , . . . ,  fr} on T of the form 

NlO 

(2.11) c %(jt) 
j:-NlO 
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with 

(2.12) f t ( t )  _> 1 on Pk\E(N),  s u p E f k  < 1 + N  -2, 
k 

and 

(2.13) fk(t) _< N -2 on X\(Pk  U E(N)). 

Such partitions exist: consider a partition P each of whose elements is an 

interval in T. Choose, for each P, the FejSr sum of order N 1° of the corresponding 

interval to get the required trigonometric polynomials approximating the atoms 

of the partition. 

A partition P of T determines a partition of X, also denoted P,  the "time 

zero" partition whose atoms are sets of the form {x e X [ x(0,0) E Pi}. 

We need the following Lemma, due to Katznelson (Lemma 1 of [3]). Let 

(Y,B, u) be a probability space. Two finite partitions P = {P1 , . . . ,P , } ,  Q = 

{Q ] , . . . ,  Qt}, of Y are e-independent if 

Z [u(Pi 0 Qi) - u(Pi)u(Qi)[ < e. 
i=1 j = l  

LEMMA 2.2: Let P = {P1,.. .  ,Ps} and Q = {Q1,.. .  ,Qt} be finite partitions of 

Y.  Assume that there is a set E C Y,  u(E) < e 2, and for each i = 1, . . .  ,s and 

j = 1 , . . . ,  t there are nonnegative measurable functions fi and gi on Y such that 

and 

f i  > 1 on  PAE, 

~-~ fyfidu < l + d, 
i = l  

gj >__ 1 on Qj \E ,  

t 

/ r  figjdu = / y  fidu / y  gjdu" 

Then P and Q are lie-independent. 

LEMMA 2.3: For any partition P of X arising as the time zero partition of a nice 

partition o fT ,  the finite state process ( X,  P) is almost block independent. 

Proof." Let R C Z 2 be a finite subset. A function of the form 

f(x)= I-[ f,A ,i) 
(i,j)en 
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where each fi.i has the form (2.11) will be called an (N,R)-function. Say that 

a partition Q of X is approximated to within 6 by an (N, R) function if there 

is a collection of (N, R)-funetions ~" with the property that there is a set E, 

p(E) < 6 2, and for each atom Qi • Q there is an fi • .~" with fi >_ 1 on Qi\E, 
fi < 6 on X\(Qi t.J E) and E i  f lid# < 1 + 6 2. Let 

p~R)= V ,,~.,m~(P). 
(n,m)ER 

Claim that if ~" is an (N, {0, 0}) collection of functions that approximates P to 

within 6, then ~-(R), the set of all functions of the form f (x)  = 1-I(id)eR fo(xiJ) 
where each fO • Jr, is an (N, R) collection of functions that approximates p(R) 

to within 6 (R) where 6 (R) = m a x { 6 v / ~ ,  ~/(1 + 62)(# R) - 1}. Firstly, the error 

set E (R) is at most the union of the fibres above the error sets on each coordinate, 

hence has measure no more than #Rp(E). Now claim by induction on # R  that 

E.tom. of e~ f < (1+62) (#R): assume this for # R  = k. and then E.~ E i  f .fnfi= 
E .  f E l  f . f i  = ~_, f f .  ~-,i fi. Writing •i fi = 1 + e. where e is a function on 

T with f [e I < 62, this is bounded by E .  f f . ( 1  + e) < (1 + 62) t + 62(1 + 62) k. 

We will say that two collections of functions ~" and ~ are independent if, for 

any f • .T', g • ~, y f gdp = f f d# y gd#. 
For any 6 > 0, define 

m6(S)  = min{~ I (~ -- 2)! > (S  - 1) × (No(S,6) )  2°} 

where 

No(S,6) = min{N I m a x { N - l y e ,  V/(1 + N-2) (s') - 1} < 6}. 

By Lemma 2.1 and the above remarks, if T = {Ti} is a collection of S x S tiles 

(squares of coordinates with side S in Z 2) that are placed with gaps of size at least 

m~(S) between adjacent tiles, then for each i there is a (No(S,6), Ti) collection 

of functions ~'i that approximates p(T,) to within 6 and has ~'i independent of 

~'j for i # j .  

Now let e > 0 be given, and put ,~ = ( 6 / k 2 ~ ' 2 ) ,  so  that ~ ek = e. Let 

n0(,)  = ~ n { n  14m, , (k (~  + m , , ( ~ ) )  < ,1 × ~ for some k • N}, 

and notice that this always exists because, for fixed 6, m6(n) grows very slowly 

i n  n .  
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Given n > n0(e), let 

S] = max{s I 4m,,(s) < n~, and (n + m,,(~))l,}, 

where we amend m~, (s) by adding some number no larger than n to allow di- 

visibility if needed. Now, by Lemma 2.1, we may tile the square ~ql of side $1 

symmetrically with tiles of size n × n spaced a distance rr%(Sl) apart and on 

each tile Ti, i = 1 , . . . ,  p(1) = S~/(n + m~, )2 there is an (No (S,,  e), Ti) conection 

of functions ~r which has ~" restricted to Ti independent of ~- restricted to Tj 

for i # j ,  and the functions of the form I-[~'__(~1 ) .fz((zij)ij~T~), .fi E ~', approximate 

P(T~u'"uT~O)) to within e. Moreover, if )q is the proportion of ,q~ that  is not 

covered by some n × n tile, then 

s, s, 
~ < = x 4nm,~ S--~x < 4m,~--n < ~1. 

Now define an inductive procedure for extending the tiling. For k _> 1, let 

Sk+l = max{s I 4mqh+,)(s) < Sk~(k+l)}. 

By construction, if ~qk is a square of side Sk, then we may tile all but el, (in 

proportion) of S~ with p(k) square tiles of side Sk-1 and on each smaller tile Ti, 

i = 1, . . .  ,p(k) we have a (No(Sk, ~), Ti) collection of functions ~" such that ~(p(k) 

rit=l .fz((zij)ij~T,), fl E ~') approximate p(T~v...T,(h)) (i.e. products of the form p(k) 

to within e. Moreover, 2- restricted to Ti is independent of ~" restricted to Tj if 

i # j .  
Each smaller tile is an Sk-1 square, which may be covered to within ek-1 with 

tiles of side Sk-~, and there is a corresponding collection of functions approxi- 

mating the join of P over all these yet smaller tiles to within e. The proportion 

of ,~k that is not covered by these smaller tiles of side S(k-2) is no greater than 

Continuing, we obtain a tiling, by n × n squares, of all but e (in proportion) 

of Z2; on each tile Ti there is a collection of functions ~i with Jri independent of 

Y'j for i # j ,  and Y'iO) × "'" × Y'i(0 approximating P(T~O)u'"uTi(0) to within e. 

We claim that  the process (X, P)  is n-block lie-independent.  To see this, let 

{ i (1) , . . . ,  i(p)} be a finite collection of n x n tiles, and let i $ { i (1) , . . . ,  i(p)}. We 

show that p(T~) is l ie-independent of p(T,(~)u...uT~(~)). Choose k large enough 

to ensure that there is a square gk of side Sk with Ti U (Tio) U.-- U Ti(p)) C ,qk. 
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Then, by construction, there are families of functions ~', ~'~ (depending only on 

the tiled coordinates in S~ and made up as a product of palrwise-independent 

functions), with the following properties: 

(1) ~" approximates P(T~O)u'"uT~¢p)) to within e, 

(2) ~'~ approximates p(Td to within e, and 

(3) ~" and ~l  are independent. 

By Lemma 2.2, we deduce that the partitions P(T~o)v'"uT~¢~)) and p(TO are 

lie-independent. 

Thus, (X,P) restricted to the tiles is an n-block lie-independent process; 

call this process Z. Now d((X, P), Z) < e because Z can be exactly copied into 

(X, P) all but e (in proportion) of the time. Let Y denote the process obtained 

by independently concatenating (X, P) restricted to each tile; Y is then n-block 

independent. 

Now Lemma 6.3 of [20] extends easily to 7. 2, showing that a 6-independent 

process is within 46 (d) of an independent one (the n-blocks do not affect this 

because we can simply think of the processes as having a larger finite state space). 

We deduce that d(Z,Y) <_ 44e and hence d((x, P), Y) < 45e, showing almost 

block independence. | 

THEOREM 2.4: The system (X,a)  is measurably isomorphic to a Benaoulli shift. 

Proof: For each partition P of X arising from a nice partition of T at time zero, 

the finite state process (X, P) is almost block independent by Lemma 2.3, and 

hence is finitely determined by Appendix B. It follows from [2], Theorem 1.1 that 

(X, P (z2)) is measurably isomorphic to a Bernoulli shift. 

Let Pk be the partition of T into k intervals of the form [~,/-t-l~k! )" If x # y 

are distinct points in X then they differ in some position, so for some k they lie 

in different atoms of P~ z2). Thus the algebra generated by Pk (z2) increases to the 

whole a-algebra B modulo null sets. By [15], §III, Theorem 5 (the Monotone 

Theorem for amenable group actions), we conclude that (X, B,/~) is measurably 

isomorphic to a Bernoulli shift. | 

3.  A n  E x a m p l e  

In this section we describe four 7. 2 actions which are all measurably isomorphic 

but not pairwise topologically conjugate. The Z 2 actions by measure preserving 

transformations (X1, a 1) and (X2, a 2) (each equipped with an invariant proba- 
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bility measure) are m e a s u r a b l y  i somorph ic  if there are sets of full measure 

Y1 C XI,  Y2 C X2 and an isomorphism of measure spaces ~b : Y1 ---' Y2 with the 

property that t a~ , ,m ) -- a~,,,m)¢ for all (n, m) e Z 2. If X1, X2 are compact 

topological spaces and the actions are by homeomorphisms, then the systems 

are topo log ica l ly  c o n j u g a t e  if there is a homeomorphism ¢ : X1 --'* )(2 with 

¢a~.,m ) = a~.,m)¢ for all (n, m) e Z 2. If Xl and X2 are compact groups then 

the systems are a lgebra ica l ly  con juga t e  if a topological conjugacy ¢ may be 

chosen to be an isomorphism of the compact groups. 

Let R = Z[z ±1, y i l ] .  If L is an R-module, then the module structure defines a 

Z u action a L on the compact dual group XL = L, (see [7] or [11] for the details). 

Consider the following ideals of R: p=<  l + x + y  >, q=< l + z  -1 + ! /  >, 

s = <  1 + x -1 + y-* >, and t = <  1 + x + y-1 >. For each ideal f there is a Z 2 

system (XR/I,  aR/l); call the four systems corresponding to the above ideals P,  

Q, S and T, respectively. Notice that P is the system considered above defined 

by (1.1) and (1.2). The compact groups in the systems Q, S and T are given by 

(3.1) XR/q = {x E T z2 x(.,m) + x(a_l,m) + x(.,m+l) = l for all n, m E Z}, 

(3.2) Xn/s  = {x E T z2 •(n,rn) "~ X(n--l,m) -~- X(n,m--1) = 1 for all n, m E Z}, 

and 

(3.3) Xn/ t  = {x E T z~ x(.,m) + x(.+l,m) + x(.,.~-l) = 1 for all n , m  E Z}. 

Since no orientation was used in the arguments above, §2 shows that P,  Q, S 

and T are each measurably isomorphic to a Bernoulli ~2 action. The entropies 

all coincide with that of a R/r by [11], so we conclude that the systems are all 

measurably isomorphic by [5], §5. A more detailed description of Ornstein's 

isomorphism theorem for Bernoulli Z d actions is given in [6], Theorem 2. 

We claim that they are not pairwise topologically conjugate. This may be seen 

from the relationship between the algebraic structure of the modules and the 

dynamical properties of the systems described in [7] and [19]. 

If the systems are topologically conjugate, then [19], Theorem 4.2, shows that 

they must be algebraically conjugate, and Corollary 4.3 then shows that  R/p,  

R/q, R/.'.'z, and R / t  must be isomorphic as R-modules, which is not the case: the 
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set of associated primes of each module is {p}, {q}, {s}, and {t} respectively. 

This is the higher dimensional analogue of noting that two toral automorphisms 

cannot be topologically conjugate unless their corresponding integer matrices 

have the same characteristic equation. 

A cruder subdivision can be made by considering periodic points: this shows 

that neither one of P and S is topologically conjugate to Q or T. 

Let Fixr L denote the subgroup of points in XL that are invariant under the 

action of the subgroup F C Z 2. If F = (a, b)Z + (c, d)Z then the dual of Fixr L is 

given by 
~ L 

< 1 - xay b, 1 - xcy d > L" 

For the lattice F = (1,1)Z + (-2,  2)Z, we compute directly that Fixr R/p ~- Z/3Z 

and f ix r  R/q -~ Z/15Z, so ] Fixr R/p 151 f ixr  R/q [ and the systems P and Q are 

therefore not topologically conjugate. 

Notice that periodic points will not distinguish P from S or Q from T. Because 

under the action of Lo[:t _° 1 ] it is clear that lattice r is invariant a n y  

Fix r R/p "= Fix r R/z an d Fixr R/q ~= Fixr n/t 

for any F. Thus the four systems P, Q, R, and S between them provide examples 

of measurable isomorphism without topological conjugacy, isomorphic periodic 

point groups of all periods without topological conjugacy, and equal dynamical 

zeta functions without topological conjugacy. 

Append ix  A 

In this appendix we prove the assertion used in the proof of Lemma 2.1 concerning 

the size of integer solutions of the equation M(n,  k)a = 0. Recall that M(n,  k) is 

the matrix (where we label the variables so that a is the integer vector ( a l , . . . ,  a , )  

with a l ¢  0): 

M ( n , k )  = Ii -1001 1 - 1  1 - 1  1 - 1  1 - 1  . . .  
- 2  3 - 4  5 - 6  7 - 8  9 ... 
1 - 3  5 - 7  9 -11 13 -15 ... 

. . . . . .  1 - ( 1  + k - 1)  
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whose j t h  row comprises (j  - 1) zeros followed by the alternating arithmetic 

progression 

1, - ( 1  + (j - 1)), (1 + 2(j - 1)), - (1 + 3(j - 1)), (1 + 4(j - 1 ) ) , . . . ,  

(I + (n + 2 - j)(j - I)(-I)"--/). 

The k equations may be written in the form ry.  a for j = 1 , . . . ,  k where r j  is the 

j t h  row of the matrix. The matrix can be row-reduced in such a way that  the 

top row becomes (1 ,0 , . . .  , 0 , c : , . . .  ,cn-k)  in which there are (k - 1) zeros. The 

row reduction is determined by this property because the matrix has maximal 

rank. Let n[ = 1 for n < 1. 

LEMMA A. 1: /.f A1,..., Ak have 

r l  +Aar2 + . . .  + Ak- l r t  = (1 ,0 , . . . , 0 ,Cm, . . . , c , _k )  

as above then A, = (s - 2)!. 

Proof: For s _< 4 this can be seen from the matrix. Let miy be the (i,j)th entry 

in M; this is given by 

rnij = (-l)i+J(l + (j - i)(i - I)) 

if i _< j and is 0 otherwise. The value of A,+a is obtained from the values of 

A1,...  A, by performing the row reduction to simplify the first s entries in the 

first row and then seeing what appears as the (s + 1)th entry in the first row: 

:,.+, = - ~ ~,~m~,,+, = - ~ ,~,,(1 + (p - : ) (s  - p + 1 ) ) ( - I ) ' + ~ + ' .  
p----I p----1 

Assume that  At = (t - 2)! for t ~ s. Then 

s--1 

a , ( :  + (p - : ) ( s  - p + 1 ) ) ( - 1 )  "+~÷'  - ~ ~ , (1  + (p - : ) ( s  - p + 1 ) ) ( - 1 )  " + '  
p = l  p = l  

= - 0  + ( s  - : ) ) ( s  - 2)!  = - ( ~  - 2 ) ! (~ )  

so  - ~ . , ,  = - ~ ( s  - 2)!  + ~ .  = ( s  - : ) ( s  - 2)!  = ( s  - 1)! ,  w h i c h  s h o w s  t h e  : e m m a .  

| 

This forces the coefficients cj to be large when they are non-zero: 
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LEMMA A.2: Each c i is divisible by (k - 2)k 

Proof: Consider c1: 

k 

Ic l = I Ap(1 + (p - 1)(k - p + 1) ) ( -1 )k+P+a  I = I.X ,l = (k - 2)!. 
p=l  

~.,,k+l 
Now Ak+1 = z.~p=l Apmp,k+2 so 

k 

c2 = Z Apmp,k+2 = Ak+1 -- Atmp,t+2 • (k - 2)!Z, 
p----1 

with similar formulae for ca, c4 and so on. | 

Now return to the equation M(n, k)a = 0; since al # 0 by assumption, the 

row-reduced equation is 
n--k 

al + ~ ciak+j = 0 
j=l 

and Lemma 2 then shows that [a~[ >_ (k - 2)! as required. 

A p p e n d i x  B 

In this appendix we show how the method of [21] applies in our situation to show 

that the three dot dynamical system is finitely determined. The equivalence of 

finitely determined with Bernoullicity for 7, d actions is shown in §1 of [2], where 

five characterizations of Bernoullicity for Z d actions are shown to be equivalent. 

Recall from §1 the definition of the dR metric for a subset R C Z2; for a finite 

state Z 2 process X let a denote the shift action of 7. 2. Let R(n) = [0, n - 1] x 

[0, n - 1] f3 Z 2. Given points n, m • Z 2 let Rect(n, m) denote the rectangle 

Rect (n ,m)  = {(a,b) • Z 2 [(n)l  <_ a _< (m)l ,(n)2 _< b _< (m)2}. 

In this section processes are stationary finite state Z 2 processes. 

Det~nition BI: A stationary process X has almost block independence if for any 

e > 0 there exists N~ such that if n > N~ and Y is another process with 

(B1) dR(n ) ( a . , b ) (Y) ,X)  = 0 for all (a,b) • Z 2, and 

(B2) r ,  restricted to n(a, b) + R(n) is independent of r restricted to n(a', b')+ 

R(n) if (a, b) ~ (a', b'), 
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then 

(B3) d(z, y) _< ~. 

Detinition B2: A stationary process X is finitely determined if given ~ > 0 there 

is a ~ > 0 and N such that  if Y is a stationary ergodic process with the same 

size state space as X and 

(B4) dR(N)(X, Y) < 

and 

(B5) Ih(X) - h(Y)l  < 

then d(X, Y) < ~. 1 

Notice that  §1 of [2] shows that  the finitely determined processes are exactly 

those arising as codings of Z 2 i.i.d, processes. 

THEOREM B3: If  X has almost block independence then X is tlnitely determined. 

Consider an array of binary digits in {0, 1} z~ . An R(n)-cell  is a square block of 

side (n - 1) consisting of l 's,  surrounded by O's. A binary array r E {0,1} R(m) is 

a ~-n-arrav if there is a disjoint collection of R(n)-cells covering at least (1 - 6) 

of R(m)  (that is, containing at least (1 - ~)m 2 coordinates). 

LEMMA B4: Assume X is almost block independent and ~ > 0. There is an 

N E N and a 6 > 0 such that i f  rt >_ N we can tlnd M so that m > M implies 

that i f r  E {0,1} R(m) is a 6--n array and 1 y is a process with 

(B6) dR(n)(a(,,b)(Y), X) = 0 if  (a, b) + R(n + 1) is an R(n)-cell and 

(BT) 17" restricted to (a, b) + R(n) is independent of ]" restricted to (a, b) + 

.(a ' ,  b') + RCn),Ca', b') # (0,0) 
then 

(B8) dR(,,,)(X,Y) _< ~. 

Proof." Choose N1 = N(13 from Definition B1. Define a process Y so that Y 

satisfies (B1), (B2) with n = N,. By (B3) we may choose N2 > N~ such that  

(B9) dR(.)(X, Y) _< ~/3 if n > N2. 
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Fix n >_ N2 + 2N1. Let r E {0,1} R(m) be a 6 - n-array, and let Y be a process 

satisfying (B6) and (B7). 

Let k l ,  k2 , . . .  E Z 2 be defined as follows. 

k,  + R(n + 1) is an R(n)-cen in r, 

k2 + R(n + 1) is an R(n)-cell in r restricted to R(m)\{kl  + R(n + 1)}, 

ks + R(n + 1) is an R(n)-cell in r restricted to 

R(m) \{k ,  + R(n + 1)} O {k2 + R(n + 1)}, 

and so on. 

Consider the R(n)-cell kj + R(n + 1); define points pj ,  m j  E Z 2 as follows. 

Let a be the least multiple of N1 exceeding (kj) l ,  b the least multiple of N1 

exceeding (kj)2, and put pj  = (a, b). To define mj ,  let c be the least multiple of 

N1 exceeding (kj)~ + n, d the least multiple of N~ exceeding (kj)2 + n, and set 

m i = (c,  d).  
Notice that Rect(pj,  mj )  sits inside an R(n)-cell. Also, pj ,  m i are sepa- 

rated by at least N2 in each coordinate by choice of n. Thus the distribution 

of Y restricted to Rect(pj,  my) is identical to the distribution of X restricted to 

Rect(pj,  mj)  (Y satisfies (B6)). 

Hence 

(BIO) JRect(pj ,mj) (api ~', apj Y) < ~/3 

by choice of Nx. 

We now join the Y process to the ~" process. On coordinates i E Rect(pj,  mj )  

for some j use (B10) to join Y to Y d closely. On the remaining coordi- 

nates, join arbitrarily. We have a d < e/3 joining on all but a proportion 6 

of the coordinates, so for sufficiently small 6, dR(m)(I y, Y) < 2e/3 say. Hence 

dR(m)(X, Y') < JR(ra)(X, Y)  + dR(m)(Y, ]") <_ e. II 

Proof of Theorem B3: Let X have state space S = {s l , . . . , sk} .  Let N,6 be 

the numbers corresponding to a given e > 0 according to Lemma B4; put n = N. 

Define a Sn(N)-valued i.i.d, process Z with measure on S n(N) given by the R(n) 

block measure /LR(,) of the S-valued process X. Let R be a {0, 1}-valued Z 2 

coding of an i.i.d, process with the property that r E R, when restricted to R(m), 

is a ~-N-array with probability at least (1 - 6). Call this property (Bl l ) .  Such 

a process may be obtained from a Rohlin R(N + 1) tower built in a Z 2 Bernoulli 

shift B (see [14] or [5] for the Rohlin lemma for Z d actions); on this tower label 
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the edge with a 0 and the rest with a 1. Let W be the S R(N) x {0,1}-valued Z 2 

process (Z, R) where the two processes are independent. Since W is a coding of 

the i.i.d, process (Z, B), it is finitely determined. Fix a point z E S and define 

as follows. If r E R is a ~-N-array, with N-cells {qi + R(N + 1)}, then on 

each cell let Yq~+R(N) = Zq~ (recall that Z is sR(N)-valued). On the remainder 

of R, let Y" -- z. Then ~" is a coding of an i.i.d, process and is therefore finitely 

determined. Moreover, (B8) and (B3) together show that d(X, 97") < e. 

Thus X is a d limit of finitely determined processes; hence X is finitely deter- 

mined (Theorem 4, §Ill of [15]). l 

COROLLARY B5: A stationary finite state Z 2 process that is almost b/ock inde- 

pendent is measurabJy isomorphic to a Bernoulli shift. 

Proof." A special case of §III.1 of [15] shows that entropy classifies finitely de- 

termined Z d processes up to measurable isomorphism. Since Bernoulli processes 

are clearly finitely determined, this shows that a finitely determined proeess is 

measurably isomorphic to a Bernoulli process. II 
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